Your browser doesn't support javascript.
loading
Three-stage transfer learning for motor imagery EEG recognition.
Li, Junhao; She, Qingshan; Meng, Ming; Du, Shengzhi; Zhang, Yingchun.
Afiliación
  • Li J; School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
  • She Q; School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China. qsshe@hdu.edu.cn.
  • Meng M; School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
  • Du S; Department of Electrical Engineering, Tshwane University of Technology, Pretoria, 0001, South Africa.
  • Zhang Y; Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
Med Biol Eng Comput ; 62(6): 1689-1701, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38342784
ABSTRACT
Motor imagery (MI) paradigms have been widely used in neural rehabilitation and drowsiness state assessment. The progress in brain-computer interface (BCI) technology has emphasized the importance of accurately and efficiently detecting motor imagery intentions from electroencephalogram (EEG). Despite the recent breakthroughs made in developing EEG-based algorithms for decoding MI, the accuracy and efficiency of these models remain limited by technical challenges posed by cross-subject heterogeneity in EEG data processing and the scarcity of EEG data for training. Inspired by the optimal transport theory, this study aims to develop a novel three-stage transfer learning (TSTL) method, which uses the existing labeled data from a source domain to improve classification performance on an unlabeled target domain. Notably, the proposed method comprises three components, namely, the Riemannian tangent space mapping (RTSM), source domain transformer (SDT), and optimal subspace mapping (OSM). The RTSM maps a symmetric positive definite matrix from the Riemannian space to the tangent space to minimize the marginal probability distribution drift. The SDT transforms the source domain to a target domain by finding the optimal transport mapping matrix to reduce the joint probability distribution differences. The OSM finally maps the transformed source domain and original target domain to the same subspace to further mitigate the distribution discrepancy. The performance of the proposed method was validated on two public BCI datasets, and the average accuracy of the algorithm on two datasets was 72.24% and 69.29%. Our results demonstrated the improved performance of EEG-based MI detection in comparison with state-of-the-art algorithms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Electroencefalografía / Interfaces Cerebro-Computador Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Med Biol Eng Comput Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Electroencefalografía / Interfaces Cerebro-Computador Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Med Biol Eng Comput Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos