Your browser doesn't support javascript.
loading
Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields.
Fernández de Fuentes, Irene; Botzem, Tim; Johnson, Mark A I; Vaartjes, Arjen; Asaad, Serwan; Mourik, Vincent; Hudson, Fay E; Itoh, Kohei M; Johnson, Brett C; Jakob, Alexander M; McCallum, Jeffrey C; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea.
Afiliación
  • Fernández de Fuentes I; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Botzem T; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Johnson MAI; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Vaartjes A; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Asaad S; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Mourik V; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Hudson FE; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
  • Itoh KM; Diraq, Sydney, NSW, Australia.
  • Johnson BC; School of Fundamental Science and Technology, Keio University, Yokohama, Japan.
  • Jakob AM; School of Science, RMIT University, Melbourne, VIC, Australia.
  • McCallum JC; School of Physics, University of Melbourne, Melbourne, VIC, Australia.
  • Jamieson DN; School of Physics, University of Melbourne, Melbourne, VIC, Australia.
  • Dzurak AS; School of Physics, University of Melbourne, Melbourne, VIC, Australia.
  • Morello A; School of Electrical Engineering and Telecommunication, UNSW Sydney, Sydney, NSW, Australia.
Nat Commun ; 15(1): 1380, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38355747
ABSTRACT
Efficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of the interactions. Here, we present an atom-based semiconductor platform where a 16-dimensional Hilbert space is built by the combined electron-nuclear states of a single antimony donor in silicon. We demonstrate the ability to navigate this large Hilbert space using both electric and magnetic fields, with gate fidelity exceeding 99.8% on the nuclear spin, and unveil fine details of the system Hamiltonian and its susceptibility to control and noise fields. These results establish high-spin donors as a rich platform for practical quantum information and to explore quantum foundations.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido