graphLambda: Fusion Graph Neural Networks for Binding Affinity Prediction.
J Chem Inf Model
; 64(7): 2323-2330, 2024 04 08.
Article
en En
| MEDLINE
| ID: mdl-38366974
ABSTRACT
Predicting the binding affinity of protein-ligand complexes is crucial for computer-aided drug discovery (CADD) and the identification of potential drug candidates. The deep learning-based scoring functions have emerged as promising predictors of binding constants. Building on recent advancements in graph neural networks, we present graphLambda for protein-ligand binding affinity prediction, which utilizes graph convolutional, attention, and isomorphism blocks to enhance the predictive capabilities. The graphLambda model exhibits superior performance across CASF16 and CSAR HiQ NRC benchmarks and demonstrates robustness with respect to different types of train-validation set partitions. The development of graphLambda underscores the potential of graph neural networks in advancing binding affinity prediction models, contributing to more effective CADD methodologies.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteínas
/
Redes Neurales de la Computación
Idioma:
En
Revista:
J Chem Inf Model
Asunto de la revista:
INFORMATICA MEDICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Austria
Pais de publicación:
Estados Unidos