Your browser doesn't support javascript.
loading
Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review.
Li, Mengli; Ivantsova, Emma; Liang, Xuefang; Martyniuk, Christopher J.
Afiliación
  • Li M; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
  • Ivantsova E; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
  • Liang X; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
  • Martyniuk CJ; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
Toxics ; 12(2)2024 Feb 02.
Article en En | MEDLINE | ID: mdl-38393220
ABSTRACT
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxics Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxics Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza