Your browser doesn't support javascript.
loading
Influence of chlorine on co-processing of hazardous wastes in brick kilns.
Xu, Siqi; Liu, Tingting; Yang, Yufei; Yang, Ziliang; Huang, Qifei.
Afiliación
  • Xu S; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China; College of Water Science, Beijing
  • Liu T; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China. Electronic address: ltt0706@163.co
  • Yang Y; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China. Electronic address: cqyyf@163.com.
  • Yang Z; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China. Electronic address: yangzl@craes.o
  • Huang Q; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China; College of Water Science, Beijing
J Environ Manage ; 354: 120464, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38401504
ABSTRACT
Brick kiln co-treatment is a novel industrial hazardous wastes (IHWs) utilization process. However, the effects of chlorine (Cl) in wastes on heavy metals (HMs) during this process are overlooked. This study investigated the stabilization/solidification (S/S) and volatilization, as well as long and short-term leaching, of HMs in Cl-containing bricks. The results indicated enhanced formations of stable mineral phases (NiFe2O4, Ni2SiO4, Cd3Al2Si3O12, CdSiO3, FeCr2O4, Cr2O3, CuFe2O4, and CuAl2O4) in bricks at a low sintering temperature (800 °C) due to the affinity between Cl and HMs. By comparing HM concentrations before and after sintering in bricks, the study observed that Cl's presence significantly elevated the volatilization rates for Cd and Cu by 30.8% and 14.2%, respectively. In contrast, the effect on volatilization for Ni and Cr was not significant. Additionally, utilizing the NEN 7375 method, the cumulative leaching rates of Ni, Cd, Cr, and Cu over a 64-day experiment under extremely acidic conditions were 0.22%, 7.18%, 0.01%, and 1.46%, respectively. Similarly, higher short-term leaching rates of Cd (4.03%) and Cu (5.73%) than those of Ni (0.94%) and Cr (0.08%) were observed. This finding might be attributed to the lower stability of the Cd and Cu solid phases under acidic environments compared to those of Ni and Cr. Surface wash-off, dissolution, and diffusion were the processes governing HM leaching from bricks. The 10-year projections revealed a minimal release of HMs during future extended leaching, implying the successful S/S of HMs. This study provides a reference for assessing the environmental impacts of brick kiln co-processing of Cl-containing IHWs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cloro / Metales Pesados Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cloro / Metales Pesados Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido