Your browser doesn't support javascript.
loading
SGLT2 inhibition, high-density lipoprotein, and kidney function: a mendelian randomization study.
Wang, Zhijuan; Wei, Jie; Zhao, Wenman; Shi, Rui; Zhu, Yuyu; Li, Xunliang; Wang, Deguang.
Afiliación
  • Wang Z; Department of Nephrology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Wei J; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Zhao W; Department of Nephrology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Shi R; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Zhu Y; Department of Nephrology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Li X; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
  • Wang D; Department of Nephrology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
Lipids Health Dis ; 23(1): 84, 2024 Mar 20.
Article en En | MEDLINE | ID: mdl-38509588
ABSTRACT

BACKGROUND:

Sodium-glucose cotransporter 2 (SGLT2) inhibition is recognized for its evident renoprotective benefits in diabetic renal disease. Recent data suggest that SGLT2 inhibition also slows down kidney disease progression and reduces the risk of acute kidney injury, regardless of whether the patient has diabetes or not, but the mechanism behind these observed effects remains elusive. The objective of this study is to utilize a mendelian randomization (MR) methodology to comprehensively examine the influence of metabolites in circulation regarding the impact of SGLT2 inhibition on kidney function.

METHODS:

We used a MR study to obtain associations between genetic proxies for SGLT2 inhibition and kidney function. We retrieved the most recent and comprehensive summary statistics from genome-wide association studies (GWAS) that have been previously published and involved kidney function parameters such as estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (UACR), and albuminuria. Additionally, we included blood metabolite data from 249 biomarkers in the UK Biobank for a more comprehensive analysis. We performed MR analyses to explore the causal relationships between SGLT2 inhibition and kidney function and two-step MR to discover potential mediating metabolites.

RESULTS:

The study found that a decrease in HbA1c levels by one standard deviation, which is genetically expected to result in SGLT2 inhibition, was linked to a decreased likelihood of developing type 2 diabetes mellitus (T2DM) (odds ratio [OR] = 0.55 [95% CI 0.35, 0.85], P = 0.007). Meanwhile, SGLT2 inhibition also protects eGFR (ß = 0.05 [95% CI 0.03, 0.08], P = 2.45 × 10- 5) and decreased UACR (-0.18 [95% CI -0.33, -0.02], P = 0.025) and albuminuria (-1.07 [95% CI -1.58, -0.57], P = 3.60 × 10- 5). Furthermore, the study found that of the 249 metabolites present in the blood, only one metabolite, specifically the concentration of small high-density lipoprotein (HDL) particles, was significantly correlated with both SGLT2 inhibition and kidney function. This metabolite was found to play a crucial role in mediating the improvement of renal function through the use of SGLT2 inhibition (ß = 0.01 [95% CI 0.005, 0.018], P = 0.001), with a mediated proportion of 13.33% (95% CI [5.71%, 26.67%], P = 0.020).

CONCLUSIONS:

The findings of this investigation provide evidence in favor of a genetically anticipated biological linkage between the inhibition of SGLT2, the presence of circulating metabolites, and renal function. The findings demonstrate that the protective effect of SGLT2 inhibition on renal function is mostly mediated by HDL particle concentrations in circulating metabolites. These results offer significant theoretical support for both the preservation of renal function and a better comprehension of the mechanisms underlying SGLT2 inhibition.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Límite: Humans Idioma: En Revista: Lipids Health Dis Asunto de la revista: BIOQUIMICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Límite: Humans Idioma: En Revista: Lipids Health Dis Asunto de la revista: BIOQUIMICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido