Your browser doesn't support javascript.
loading
A novel framework for quantitative attribution of particulate matter pollution mitigation to natural and socioeconomic drivers.
Cui, Hao; Li, Jian; Sun, Yutong; Milne, Russell; Tao, Yiwen; Ren, Jingli.
Afiliación
  • Cui H; School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, Henan, China.
  • Li J; School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, Henan, China.
  • Sun Y; Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
  • Milne R; Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Alberta, Canada.
  • Tao Y; School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address: taoyiwen@zzu.edu.cn.
  • Ren J; School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address: renjl@zzu.edu.cn.
Sci Total Environ ; 926: 171910, 2024 May 20.
Article en En | MEDLINE | ID: mdl-38522549
ABSTRACT
Quantifying drivers contributing to air quality improvements is crucial for pollution prevention and optimizing local policies. Despite advances in machine learning for air quality analysis, their limited interpretability hinders attribution on global and local scales, vital for informed city management. Our study introduces an innovative framework quantifying socioeconomic and natural impacts on mitigation of particulate matter pollution in 31 Chinese major cities from 2014 to 2021. Two indices, formulated based on the additivity of Shapley additive explanations, are proposed to measure driver contributions globally and locally. Our analysis explores the self-contained and interactive effects of these drivers on particulate levels, pinpointing critical threshold values where these drivers trigger shifts in particulate matter levels. It is revealed that SO2, NOx, and dust emission reductions collectively account for 51.58 % and 51.96 % of PM2.5 and PM10 decreases at the global level. Moreover, our findings unveil a significant heterogeneity in driver contributions to pollutant mitigation across distinct cities, which can be instrumental in crafting location-specific policy recommendations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos