Deep Mind 21 functional does not extrapolate to transition metal chemistry.
Phys Chem Chem Phys
; 26(16): 12289-12298, 2024 Apr 24.
Article
en En
| MEDLINE
| ID: mdl-38597718
ABSTRACT
The development of density functional approximations stands at a crossroads while machine-learned functionals show potential to surpass their human-designed counterparts, their extrapolation to unseen chemistry lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned functional [Science, 2021, 374, 1385-1389], trained on main-group chemistry, extrapolates to transition metal chemistry (TMC). We show that DM21 demonstrates comparable or occasionally superior accuracy to B3LYP for TMC, but consistently struggles with achieving self-consistent field convergence for TMC molecules. We also compare main-group and TMC machine-learning DM21 features to shed light on DM21's challenges in TMC. We finally propose strategies to overcome limitations in the extrapolative capabilities of machine-learned functionals in TMC.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Suiza
Pais de publicación:
Reino Unido