Your browser doesn't support javascript.
loading
Deep Mind 21 functional does not extrapolate to transition metal chemistry.
Zhao, Heng; Gould, Tim; Vuckovic, Stefan.
Afiliación
  • Zhao H; Department of Chemistry, University of Fribourg, Fribourg, Switzerland. stefan.vuckovic@unifr.ch.
  • Gould T; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia.
  • Vuckovic S; Department of Chemistry, University of Fribourg, Fribourg, Switzerland. stefan.vuckovic@unifr.ch.
Phys Chem Chem Phys ; 26(16): 12289-12298, 2024 Apr 24.
Article en En | MEDLINE | ID: mdl-38597718
ABSTRACT
The development of density functional approximations stands at a crossroads while machine-learned functionals show potential to surpass their human-designed counterparts, their extrapolation to unseen chemistry lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned functional [Science, 2021, 374, 1385-1389], trained on main-group chemistry, extrapolates to transition metal chemistry (TMC). We show that DM21 demonstrates comparable or occasionally superior accuracy to B3LYP for TMC, but consistently struggles with achieving self-consistent field convergence for TMC molecules. We also compare main-group and TMC machine-learning DM21 features to shed light on DM21's challenges in TMC. We finally propose strategies to overcome limitations in the extrapolative capabilities of machine-learned functionals in TMC.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido