Corosolic acid attenuates platelet-derived growth factor signaling in macrophages and smooth muscle cells of pulmonary arterial hypertension.
Eur J Pharmacol
; 973: 176564, 2024 Jun 15.
Article
en En
| MEDLINE
| ID: mdl-38614383
ABSTRACT
Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Triterpenos
/
Transducción de Señal
/
Movimiento Celular
/
Miocitos del Músculo Liso
/
Proliferación Celular
/
Factor de Transcripción STAT3
/
Macrófagos
Límite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
Eur J Pharmacol
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Países Bajos