Your browser doesn't support javascript.
loading
Factors affecting severity of wildfires in Scottish heathlands and blanket bogs.
Naszarkowski, Noemi A L; Cornulier, Thomas; Woodin, Sarah J; Ross, Louise C; Hester, Alison J; Pakeman, Robin J.
Afiliación
  • Naszarkowski NAL; School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU, UK; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address: noemileahn@gmail.com.
  • Cornulier T; Biomathematics and Statistics Scotland, Craigiebuckler, Aberdeen AB15 8QH, UK.
  • Woodin SJ; School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU, UK.
  • Ross LC; School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU, UK; Rural Land Use Department, Scotland's Rural College, Craibstone Estate, Aberdeen AB21 9YA, UK.
  • Hester AJ; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
  • Pakeman RJ; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
Sci Total Environ ; 931: 172746, 2024 Jun 25.
Article en En | MEDLINE | ID: mdl-38679103
ABSTRACT
Temperate heathlands and blanket bogs are globally rare and face growing wildfire threats. Ecosystem impacts differ between low and high severity fires, where severity reflects immediate fuel consumption. This study assessed factors influencing fire severity in Scottish heathlands and blanket bogs, including the efficacy of the Canadian Fire Weather Index System (CFWIS). Using remote sensing, we measured the differenced Normalised Burn Ratio at 92 wildfire sites from 2015 to 2021. We used Generalised Additive Mixed Models to investigate the impact of topography, habitat wetness, CFWIS components and 30-day weather on severity. Dry heath exhibited higher severity than wet heath and blanket bog, and slope, elevation and south facing aspect were positively correlated to severity. Weather effects were less clear due to data scale differences, yet still indicated weather's significant role in severity. Rainfall had an increasingly negative effect from approximately 15 days before the fire, whilst temperature had an increasingly positive effect. Vapour Pressure Deficit (VPD) was the weather variable with highest explanatory value, and predicted severity better than any CFWIS component. The best-explained fire severity model (R2 = 0.25) incorporated topography, habitat wetness wind and VPD on the day of the fire. The Drought Code (DC), predicting organic matter flammability at ≥10 cm soil depth, was the CFWIS component with the highest predictive effect across habitats. Our findings suggest that wildfires in wet heath and blanket bogs are typically characterised by low severity, but that warmer, drier weather may increase the risk of severe, smouldering fires which threaten peatland carbon stores.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Ecosistema / Incendios Forestales País/Región como asunto: Europa Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Ecosistema / Incendios Forestales País/Región como asunto: Europa Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos