Your browser doesn't support javascript.
loading
Advancing Breast Cancer Research Through Collaborative Computing: Harnessing Google Colab for Innovation.
Lam, Sydney T; Lam, Jonathan W; Reddy, Akshay J; Lee, Longines; Yu, Zeyu; Falkenstein, Benjamin E; Fu, Victor W; Cheng, Evan; Patel, Rakesh.
Afiliación
  • Lam ST; Medicine, California University of Science and Medicine, Colton, USA.
  • Lam JW; Medicine, California University of Science and Medicine, Colton, USA.
  • Reddy AJ; Medicine, California University of Science and Medicine, Colton, USA.
  • Lee L; Medicine, California University of Science and Medicine, Colton, USA.
  • Yu Z; Medicine, California Health Sciences University, Clovis, USA.
  • Falkenstein BE; Medicine, California Health Sciences University, Clovis, USA.
  • Fu VW; Medicine, California Health Sciences University, Clovis, USA.
  • Cheng E; Medicine, California Health Sciences University, Clovis, USA.
  • Patel R; Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, USA.
Cureus ; 16(3): e57280, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38690491
ABSTRACT
This investigation explores the potential efficacy of machine learning algorithms (MLAs), particularly convolutional neural networks (CNNs), in distinguishing between benign and malignant breast cancer tissue through the analysis of 1000 breast cancer images gathered from Kaggle.com, a domain of publicly accessible data. The dataset was meticulously partitioned into training, validation, and testing sets to facilitate model development and evaluation. Our results reveal promising outcomes, with the developed model achieving notable precision (92%), recall (92%), accuracy (92%), sensitivity (89%), specificity (96%), an F1 score of 0.92, and an area under the curve (AUC) of 0.944. These metrics underscore the model's ability to accurately identify malignant breast cancer images. Because of limitations such as sample size and potential variations in image quality, further research, data collection, and integration of theoretical models in a real-world clinical setting are needed to expand the reliability and generalizability of these MLAs. Nonetheless, this study serves to highlight the potential use of artificial intelligence models as supporting tools for physicians to utilize in breast cancer detection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos