Your browser doesn't support javascript.
loading
Cross-modality cerebrovascular segmentation based on pseudo-label generation via paired data.
Guo, Zhanqiang; Feng, Jianjiang; Lu, Wangsheng; Yin, Yin; Yang, Guangming; Zhou, Jie.
Afiliación
  • Guo Z; Department of Automation, BNRist, Tsinghua University, Beijing, China.
  • Feng J; Department of Automation, BNRist, Tsinghua University, Beijing, China. Electronic address: jfeng@tsinghua.edu.cn.
  • Lu W; UnionStrong (Beijing) Technology Co.Ltd, Beijing, China.
  • Yin Y; UnionStrong (Beijing) Technology Co.Ltd, Beijing, China.
  • Yang G; UnionStrong (Beijing) Technology Co.Ltd, Beijing, China.
  • Zhou J; Department of Automation, BNRist, Tsinghua University, Beijing, China.
Comput Med Imaging Graph ; 115: 102393, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38704993
ABSTRACT
Accurate segmentation of cerebrovascular structures from Computed Tomography Angiography (CTA), Magnetic Resonance Angiography (MRA), and Digital Subtraction Angiography (DSA) is crucial for clinical diagnosis of cranial vascular diseases. Recent advancements in deep Convolution Neural Network (CNN) have significantly improved the segmentation process. However, training segmentation networks for all modalities requires extensive data labeling for each modality, which is often expensive and time-consuming. To circumvent this limitation, we introduce an approach to train cross-modality cerebrovascular segmentation network based on paired data from source and target domains. Our approach involves training a universal vessel segmentation network with manually labeled source domain data, which automatically produces initial labels for target domain training images. We improve the initial labels of target domain training images by fusing paired images, which are then used to refine the target domain segmentation network. A series of experimental arrangements is presented to assess the efficacy of our method in various practical application scenarios. The experiments conducted on an MRA-CTA dataset and a DSA-CTA dataset demonstrate that the proposed method is effective for cross-modality cerebrovascular segmentation and achieves state-of-the-art performance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Angiografía de Substracción Digital / Angiografía por Resonancia Magnética / Angiografía por Tomografía Computarizada Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Angiografía de Substracción Digital / Angiografía por Resonancia Magnética / Angiografía por Tomografía Computarizada Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos