Your browser doesn't support javascript.
loading
Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach.
Grassano, Juan S; Pickering, Ignacio; Roitberg, Adrian E; González Lebrero, Mariano C; Estrin, Dario A; Semelak, Jonathan A.
Afiliación
  • Grassano JS; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EHA, Argentina.
  • Pickering I; CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
  • Roitberg AE; Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
  • González Lebrero MC; CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
  • Estrin DA; Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
  • Semelak JA; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EHA, Argentina.
J Chem Inf Model ; 64(10): 4047-4058, 2024 May 27.
Article en En | MEDLINE | ID: mdl-38710065
ABSTRACT
Machine learning (ML) methods have reached high accuracy levels for the prediction of in vacuo molecular properties. However, the simulation of large systems solely through ML methods (such as those based on neural network potentials) is still a challenge. In this context, one of the most promising frameworks for integrating ML schemes in the simulation of complex molecular systems are the so-called ML/MM methods. These multiscale approaches combine ML methods with classical force fields (MM), in the same spirit as the successful hybrid quantum mechanics-molecular mechanics methods (QM/MM). The key issue for such ML/MM methods is an adequate description of the coupling between the region of the system described by ML and the region described at the MM level. In the context of QM/MM schemes, the main ingredient of the interaction is electrostatic, and the state of the art is the so-called electrostatic-embedding. In this study, we analyze the quality of simpler mechanical embedding-based approaches, specifically focusing on their application within a ML/MM framework utilizing atomic partial charges derived in vacuo. Taking as reference electrostatic embedding calculations performed at a QM(DFT)/MM level, we explore different atomic charges schemes, as well as a polarization correction computed using atomic polarizabilites. Our benchmark data set comprises a set of about 80k small organic structures from the ANI-1x and ANI-2x databases, solvated in water. The results suggest that the minimal basis iterative stockholder (MBIS) atomic charges yield the best agreement with the reference coupling energy. Remarkable enhancements are achieved by including a simple polarization correction.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Estados Unidos