Your browser doesn't support javascript.
loading
Effect of different constraining boundary conditions on simulated femoral stresses and strains during gait.
Bavil, Alireza Y; Eghan-Acquah, Emmanuel; Diamond, Laura E; Barrett, Rod; Carty, Christopher P; Barzan, Martina; Nasseri, Azadeh; Lloyd, David G; Saxby, David J; Feih, Stefanie.
Afiliación
  • Bavil AY; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
  • Eghan-Acquah E; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
  • Diamond LE; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
  • Barrett R; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
  • Carty CP; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
  • Barzan M; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
  • Nasseri A; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
  • Lloyd DG; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
  • Saxby DJ; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
  • Feih S; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
Sci Rep ; 14(1): 10808, 2024 05 11.
Article en En | MEDLINE | ID: mdl-38734763
ABSTRACT
Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µÎµ), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for  both healthy and pathological femurs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Análisis de Elementos Finitos / Fémur / Marcha Límite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Análisis de Elementos Finitos / Fémur / Marcha Límite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido