Your browser doesn't support javascript.
loading
scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network.
Li, Chengyu; Shao, Xin; Zhang, Shujing; Wang, Yingchao; Jin, Kaiyu; Yang, Penghui; Lu, Xiaoyan; Fan, Xiaohui; Wang, Yi.
Afiliación
  • Li C; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
  • Shao X; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China. Electronic address: xin_shao@zju.edu
  • Zhang S; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
  • Wang Y; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
  • Jin K; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
  • Yang P; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
  • Lu X; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
  • Fan X; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China; Jinhua Institute of Zhejiang Univers
  • Wang Y; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China. Electronic address: zjuwangyi@zju.ed
Cell Rep Med ; 5(6): 101568, 2024 Jun 18.
Article en En | MEDLINE | ID: mdl-38754419
ABSTRACT
Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Reguladoras de Genes / Análisis de la Célula Individual Límite: Animals / Humans Idioma: En Revista: Cell Rep Med Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Reguladoras de Genes / Análisis de la Célula Individual Límite: Animals / Humans Idioma: En Revista: Cell Rep Med Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos