Your browser doesn't support javascript.
loading
Spatio-temporal characterization of phenotypic resistance in malaria vector species.
Ibrahim, Eric Ali; Wamalwa, Mark; Odindi, John; Tonnang, Henri E Z.
Afiliación
  • Ibrahim EA; International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
  • Wamalwa M; School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
  • Odindi J; International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
  • Tonnang HEZ; School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
BMC Biol ; 22(1): 117, 2024 May 20.
Article en En | MEDLINE | ID: mdl-38764011
ABSTRACT

BACKGROUND:

Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review.

RESULTS:

The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables.

CONCLUSIONS:

The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Resistencia a los Insecticidas / Mosquitos Vectores / Malaria / Anopheles Límite: Animals País/Región como asunto: Africa Idioma: En Revista: BMC Biol Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Kenia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Resistencia a los Insecticidas / Mosquitos Vectores / Malaria / Anopheles Límite: Animals País/Región como asunto: Africa Idioma: En Revista: BMC Biol Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Kenia Pais de publicación: Reino Unido