Your browser doesn't support javascript.
loading
Prediction of Achilles Tendon Force During Common Motor Tasks From Markerless Video.
Article en En | MEDLINE | ID: mdl-38787676
ABSTRACT
Remodeling of the Achilles tendon (AT) is partly driven by its mechanical environment. AT force can be estimated with neuromusculoskeletal (NMSK) modeling; however, the complex experimental setup required to perform the analyses confines use to the laboratory. We developed task-specific long short-term memory (LSTM) neural networks that employ markerless video data to predict the AT force during walking, running, countermovement jump, single-leg landing, and single-leg heel rise. The task-specific LSTM models were trained on pose estimation keypoints and corresponding AT force data from 16 subjects, calculated via an established NMSK modeling pipeline, and cross-validated using a leave-one-subject-out approach. As proof-of-concept, new motion data of one participant was collected with two smartphones and used to predict AT forces. The task-specific LSTM models predicted the time-series AT force using synthesized pose estimation data with root mean square error (RMSE) ≤ 526 N, normalized RMSE (nRMSE) ≤ 0.21 , R 2 ≥ 0.81 . Walking task resulted the most accurate with RMSE = 189±62 N; nRMSE = 0.11±0.03 , R 2 = 0.92±0.04 . AT force predicted with smartphones video data was physiologically plausible, agreeing in timing and magnitude with established force profiles. This study demonstrated the feasibility of using low-cost solutions to deploy complex biomechanical analyses outside the laboratory.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carrera / Tendón Calcáneo / Grabación en Video / Caminata / Redes Neurales de la Computación Límite: Adult / Female / Humans / Male Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Asunto de la revista: ENGENHARIA BIOMEDICA / REABILITACAO Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carrera / Tendón Calcáneo / Grabación en Video / Caminata / Redes Neurales de la Computación Límite: Adult / Female / Humans / Male Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Asunto de la revista: ENGENHARIA BIOMEDICA / REABILITACAO Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos