Your browser doesn't support javascript.
loading
Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?
Kim, Matthew; Wang, Jen-Yeu; Lu, Weiguo; Jiang, Hao; Stojadinovic, Strahinja; Wardak, Zabi; Dan, Tu; Timmerman, Robert; Wang, Lei; Chuang, Cynthia; Szalkowski, Gregory; Liu, Lianli; Pollom, Erqi; Rahimy, Elham; Soltys, Scott; Chen, Mingli; Gu, Xuejun.
Afiliación
  • Kim M; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Wang JY; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Lu W; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Jiang H; NeuralRad LLC, Madison, WI 53717, USA.
  • Stojadinovic S; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Wardak Z; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Dan T; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Timmerman R; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Wang L; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Chuang C; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Szalkowski G; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Liu L; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Pollom E; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Rahimy E; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Soltys S; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
  • Chen M; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Gu X; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
Bioengineering (Basel) ; 11(5)2024 May 03.
Article en En | MEDLINE | ID: mdl-38790322
ABSTRACT
Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician's manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza