Optimization of immobilized urease enzyme on porous polymer for enhancing the stability, reusability and enzymatic kinetics using response surface methodology.
Colloids Surf B Biointerfaces
; 240: 113986, 2024 Aug.
Article
en En
| MEDLINE
| ID: mdl-38795587
ABSTRACT
The study examines the immobilization of the urease enzyme on a range of High Internal Phase Emulsion (polyHIPE) materials, assessing characteristics, efficiency, and performance. It also investigates the impact of polyHIPE type, quantity, incubation time, and various parameters on the process and enzyme activity. Surface morphology and functional groups of polyHIPE materials were determined through scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) analyses, revealing significant alterations after modification with polyglutaraldehyde (PGA). The maximum immobilization efficiency of 95% was achieved by adding PGA to polyHIPE materials with an incubation period of 15â¯h. The optimized conditions for immobilized enzyme using a Box-Behnken design (BBD) of response surface methodology (RSM) were as follows temperature (40.8 °C), pH (7.1) and NaCl concentration (0.007â¯g/L). Furthermore, the immobilized enzyme demonstrated remarkable reusability, retaining 75% of its initial activity after six cycles, and sustained shelf-life stability, retaining over 40% activity after 10 days at room temperature. Kinetic analyses revealed that immobilized urease exhibited higher affinity for the substrate, but lower rate of substrate conversion compared to the free enzyme. These findings offer valuable insights into optimizing urease immobilization processes and enhancing urease stability and activity, with potential applications in various fields, including biotechnology and biocatalysis.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Propiedades de Superficie
/
Ureasa
/
Estabilidad de Enzimas
/
Enzimas Inmovilizadas
Idioma:
En
Revista:
Colloids Surf B Biointerfaces
Asunto de la revista:
QUIMICA
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Países Bajos