Your browser doesn't support javascript.
loading
Optimization of immobilized urease enzyme on porous polymer for enhancing the stability, reusability and enzymatic kinetics using response surface methodology.
Sahin, Busra; Ozbey-Unal, Bahar; Dizge, Nadir; Keskinler, Bulent; Balcik, Cigdem.
Afiliación
  • Sahin B; Department of Biotechnology, Gebze Technical University, Gebze 41400, Turkey.
  • Ozbey-Unal B; Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey; Institute of Earth and Marine Sciences, Gebze Technical University, Gebze 41400, Turkey.
  • Dizge N; Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey.
  • Keskinler B; Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey.
  • Balcik C; Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey. Electronic address: cigdembalcik@gtu.edu.tr.
Colloids Surf B Biointerfaces ; 240: 113986, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38795587
ABSTRACT
The study examines the immobilization of the urease enzyme on a range of High Internal Phase Emulsion (polyHIPE) materials, assessing characteristics, efficiency, and performance. It also investigates the impact of polyHIPE type, quantity, incubation time, and various parameters on the process and enzyme activity. Surface morphology and functional groups of polyHIPE materials were determined through scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) analyses, revealing significant alterations after modification with polyglutaraldehyde (PGA). The maximum immobilization efficiency of 95% was achieved by adding PGA to polyHIPE materials with an incubation period of 15 h. The optimized conditions for immobilized enzyme using a Box-Behnken design (BBD) of response surface methodology (RSM) were as follows temperature (40.8 °C), pH (7.1) and NaCl concentration (0.007 g/L). Furthermore, the immobilized enzyme demonstrated remarkable reusability, retaining 75% of its initial activity after six cycles, and sustained shelf-life stability, retaining over 40% activity after 10 days at room temperature. Kinetic analyses revealed that immobilized urease exhibited higher affinity for the substrate, but lower rate of substrate conversion compared to the free enzyme. These findings offer valuable insights into optimizing urease immobilization processes and enhancing urease stability and activity, with potential applications in various fields, including biotechnology and biocatalysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiedades de Superficie / Ureasa / Estabilidad de Enzimas / Enzimas Inmovilizadas Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiedades de Superficie / Ureasa / Estabilidad de Enzimas / Enzimas Inmovilizadas Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos