Your browser doesn't support javascript.
loading
Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to bok choy (Brassica chinensis L.) in garden soil.
Kim, Sung Hoon; Bae, Sujin; Sung, Yeon Woo; Hwang, Yu Sik.
Afiliación
  • Kim SH; Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea; Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, Republic of Korea.
  • Bae S; Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea.
  • Sung YW; Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
  • Hwang YS; Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea. Electronic address: yshwang@kitox.re.kr.
Ecotoxicol Environ Saf ; 280: 116519, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38833977
ABSTRACT
The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (µ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the µ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tamaño de la Partícula / Contaminantes del Suelo / Óxido de Zinc / Brassica / Hojas de la Planta / Nanopartículas del Metal / Bioacumulación Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tamaño de la Partícula / Contaminantes del Suelo / Óxido de Zinc / Brassica / Hojas de la Planta / Nanopartículas del Metal / Bioacumulación Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos