Your browser doesn't support javascript.
loading
Ultrasound induced grain refinement of crystallization in evaporative saline droplets.
Zhang, Xiaoqiang; Chen, Hongyue; Wang, Yuhan; Gao, Xin; Wang, Zhijun; Wang, Nan; Zang, Duyang.
Afiliación
  • Zhang X; MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China; Shaanxi Liquid Physics Research Center, Xi'an 710129, China.
  • Chen H; MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China; Shaanxi Liquid Physics Research Center, Xi'an 710129, China.
  • Wang Y; MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China; Shaanxi Liquid Physics Research Center, Xi'an 710129, China.
  • Gao X; Nanjing Sonodrive Technology Co., Ltd., Nanjing 210034, China.
  • Wang Z; State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
  • Wang N; MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
  • Zang D; MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China; Shaanxi Liquid Physics Research Center, Xi'an 710129, China. Electronic address: dyzang@nwpu.edu.cn.
Ultrason Sonochem ; 107: 106938, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38833999
ABSTRACT
We investigate the effect of ultrasound on the evaporation and crystallization of sessile NaCl solution droplets which were positioned in traveling or standing wave ultrasound field. The experimental results indicated that the ultrasound field can significantly accelerate the evaporation rate of the sessile droplets and refine the crystal grains. By adjusting the distance between the sessile droplets and the ultrasound emitter, it is found that, in traveling wave ultrasound field, the sessile droplet evaporation time and the time for the appearance of NaCl grains exhibited a fluctuating increase as the droplet-emitter distance increased. While in the standing wave ultrasound, the sessile droplet evaporation rate increases with the increasing droplet-emitter distance. Overall, the traveling wave ultrasound field has a stronger effect on grain refinement of the sessile droplets than the standing wave ultrasound field. The grain refinement is attributed to the decrease of critical nucleation radius caused by ultrasound energy and the increase of the nucleation rate caused by the accelerated evaporation rate. In addition, the breakage of grains caused by ultrasonic cavitation would also lead to grain refinement.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos