Your browser doesn't support javascript.
loading
Deep generative denoising networks enhance quality and accuracy of gated cardiac PET data.
Jafaritadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Klén, Riku; Saraste, Antti; Levin, Craig S.
Afiliación
  • Jafaritadi M; Department of Radiology, Stanford University, Stanford, CA, USA.
  • Teuho J; Turku PET Center, University of Turku, Turku, Finland.
  • Lehtonen E; Turku PET Center, Turku University Hospital, Turku, Finland.
  • Klén R; Turku PET Center, University of Turku, Turku, Finland.
  • Saraste A; Turku PET Center, University of Turku, Turku, Finland.
  • Levin CS; Turku PET Center, Turku University Hospital, Turku, Finland.
Ann Nucl Med ; 38(10): 775-788, 2024 Oct.
Article en En | MEDLINE | ID: mdl-38842629
ABSTRACT

BACKGROUND:

Cardiac positron emission tomography (PET) can visualize and quantify the molecular and physiological pathways of cardiac function. However, cardiac and respiratory motion can introduce blurring that reduces PET image quality and quantitative accuracy. Dual cardiac- and respiratory-gated PET reconstruction can mitigate motion artifacts but increases noise as only a subset of data are used for each time frame of the cardiac cycle.

AIM:

The objective of this study is to create a zero-shot image denoising framework using a conditional generative adversarial networks (cGANs) for improving image quality and quantitative accuracy in non-gated and dual-gated cardiac PET images.

METHODS:

Our study included retrospective list-mode data from 40 patients who underwent an 18F-fluorodeoxyglucose (18F-FDG) cardiac PET study. We initially trained and evaluated a 3D cGAN-known as Pix2Pix-on simulated non-gated low-count PET data paired with corresponding full-count target data, and then deployed the model on an unseen test set acquired on the same PET/CT system including both non-gated and dual-gated PET data.

RESULTS:

Quantitative analysis demonstrated that the 3D Pix2Pix network architecture achieved significantly (p value<0.05) enhanced image quality and accuracy in both non-gated and gated cardiac PET images. At 5%, 10%, and 15% preserved count statistics, the model increased peak signal-to-noise ratio (PSNR) by 33.7%, 21.2%, and 15.5%, structural similarity index (SSIM) by 7.1%, 3.3%, and 2.2%, and reduced mean absolute error (MAE) by 61.4%, 54.3%, and 49.7%, respectively. When tested on dual-gated PET data, the model consistently reduced noise, irrespective of cardiac/respiratory motion phases, while maintaining image resolution and accuracy. Significant improvements were observed across all gates, including a 34.7% increase in PSNR, a 7.8% improvement in SSIM, and a 60.3% reduction in MAE.

CONCLUSION:

The findings of this study indicate that dual-gated cardiac PET images, which often have post-reconstruction artifacts potentially affecting diagnostic performance, can be effectively improved using a generative pre-trained denoising network.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía de Emisión de Positrones / Relación Señal-Ruido / Corazón Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Ann Nucl Med Asunto de la revista: MEDICINA NUCLEAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía de Emisión de Positrones / Relación Señal-Ruido / Corazón Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Ann Nucl Med Asunto de la revista: MEDICINA NUCLEAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Japón