Circumventing the activity-selectivity trade-off via the confinement effect from induced potential barriers on the Pd nanoparticle surface.
Chem Sci
; 15(22): 8363-8371, 2024 Jun 05.
Article
en En
| MEDLINE
| ID: mdl-38846393
ABSTRACT
The request for both high catalytic selectivity and high catalytic activity is rather challenging, particularly for catalysis systems with the primary and side reactions having comparable energy barriers. Here in this study, we simultaneously optimized the selectivity and activity for acetylene semi-hydrogenation by rationally and continuously varying the doping ratio of Zn atoms on the surface of Pd particles in Pd/ZnO catalysts. In the reaction temperature range of 40-200 °C, the conversion of acetylene was close to â¼100%, and the selectivity for ethylene exceeded 90% (the highest ethylene selectivity, â¼98%). Experimental characterization and density functional theory calculations revealed that the Zn promoter could alter the catalyst's potential energy surface, resulting in a "confinement" effect, which effectively improves the selectivity yet without significantly impairing the catalytic activity. The mismatched impacts on activity and selectivity resulting from continuous and controllable alteration in the catalyst structure provide a promising parameter space within which the two aspects could both be optimized.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Chem Sci
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido