Your browser doesn't support javascript.
loading
Triacontanol delivery by nano star shaped polymer promoted growth in maize.
Jiang, Bingyao; Yang, Jia; Zhong, Xingyu; Yan, Shuo; Yin, Meizhen; Shen, Jie; Lei, Bin; Li, Zhaohu; Zhou, Yuyi; Duan, Liusheng.
Afiliación
  • Jiang B; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Yang J; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Zhong X; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Yan S; Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Yin M; State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
  • Shen J; Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Lei B; Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
  • Li Z; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
  • Zhou Y; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. Electronic address:
  • Duan L; State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; College of Plant Sc
Plant Physiol Biochem ; 213: 108815, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38861820
ABSTRACT
Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Zea mays / Alcoholes Grasos Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Zea mays / Alcoholes Grasos Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia