Your browser doesn't support javascript.
loading
Neural network variational Monte Carlo for positronic chemistry.
Cassella, Gino; Foulkes, W M C; Pfau, David; Spencer, James S.
Afiliación
  • Cassella G; Dept. of Physics, Imperial College London, London, SW7 2AZ, UK. g.cassella20@imperial.ac.uk.
  • Foulkes WMC; Dept. of Physics, Imperial College London, London, SW7 2AZ, UK.
  • Pfau D; Dept. of Physics, Imperial College London, London, SW7 2AZ, UK.
  • Spencer JS; DeepMind, London, N1C 4DJ, UK.
Nat Commun ; 15(1): 5214, 2024 Jun 18.
Article en En | MEDLINE | ID: mdl-38890287
ABSTRACT
Quantum chemical calculations of the ground-state properties of positron-molecule complexes are challenging. The main difficulty lies in employing an appropriate basis set for representing the coalescence between electrons and a positron. Here, we tackle this problem with the recently developed Fermionic neural network (FermiNet) wavefunction, which does not depend on a basis set. We find that FermiNet produces highly accurate, in some cases state-of-the-art, ground-state energies across a range of atoms and small molecules with a wide variety of qualitatively distinct positron binding characteristics. We calculate the binding energy of the challenging non-polar benzene molecule, finding good agreement with the experimental value, and obtain annihilation rates which compare favourably with those obtained with explicitly correlated Gaussian wavefunctions. Our results demonstrate a generic advantage of neural network wavefunction-based methods and broaden their applicability to systems beyond the standard molecular Hamiltonian.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido