Your browser doesn't support javascript.
loading
Integrative deep learning with prior assisted feature selection.
Wang, Feifei; Jia, Ke; Li, Yang.
Afiliación
  • Wang F; Center for Applied Statistics, Renmin University of China, Beijing, China.
  • Jia K; School of Statistics, Renmin University of China, Beijing, China.
  • Li Y; School of Statistics, Renmin University of China, Beijing, China.
Stat Med ; 43(20): 3792-3814, 2024 Sep 10.
Article en En | MEDLINE | ID: mdl-38923006
ABSTRACT
Integrative analysis has emerged as a prominent tool in biomedical research, offering a solution to the "small n $$ n $$ and large p $$ p $$ " challenge. Leveraging the powerful capabilities of deep learning in extracting complex relationship between genes and diseases, our objective in this study is to incorporate deep learning into the framework of integrative analysis. Recognizing the redundancy within candidate features, we introduce a dedicated feature selection layer in the proposed integrative deep learning method. To further improve the performance of feature selection, the rich previous researches are utilized by an ensemble learning method to identify "prior information". This leads to the proposed prior assisted integrative deep learning (PANDA) method. We demonstrate the superiority of the PANDA method through a series of simulation studies, showing its clear advantages over competing approaches in both feature selection and outcome prediction. Finally, a skin cutaneous melanoma (SKCM) dataset is extensively analyzed by the PANDA method to show its practical application.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Cutáneas / Aprendizaje Profundo / Melanoma Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Cutáneas / Aprendizaje Profundo / Melanoma Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido