Your browser doesn't support javascript.
loading
Multi-method characterization of groundwater nitrate and sulfate contamination by karst mines in southwest China.
Zhu, Mingtan; Chen, Jiajing; He, Changlong; Ren, Shuang; Liu, Guo.
Afiliación
  • Zhu M; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
  • Chen J; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
  • He C; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
  • Ren S; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
  • Liu G; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
Sci Total Environ ; 946: 174375, 2024 Oct 10.
Article en En | MEDLINE | ID: mdl-38960175
ABSTRACT
Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China. The outcomes indicated that hydrochemical component in the water bodies of the study area is mainly derived from the dissolution of silicate rocks, carbonate rocks and sulfate minerals as well as the oxidation of sulfides. The human and agricultural wastewater, soil nitrogen, and fertilizers were the predominant inputs sources of nitrate to the mine water environment; the predominant inputs sources of sulfide were mineral oxidation, evaporite dissolution, atmospheric deposition, and sewage. Groundwater is mainly recharged from atmospheric precipitation, and surface water is closely hydraulically connected to groundwater. Nitrogen and oxygen isotope composition and water chemistry indicative of nitrification dominate the nitrogen cycle in the study area. The oxidation of pyrite and bacterial sulfate reduction (SRB) had no significant impact on the stable isotopes of groundwater. The results of this study demonstrate the inputs of different sources to nitrate and sulfate in karst mines and associated transformation processes. The results of this study can assist in the conservation of groundwater quality in mining areas and can act as a reference for future related studies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos