Your browser doesn't support javascript.
loading
Efficient electrochemical oxidation of antibiotic wastewater using a graphene-loaded PbO2 membrane anode: Mechanisms and applications.
Peng, Yifei; Yan, Yan; Ma, Xiangjuan; Jiang, Bowen; Chen, Ruya; Feng, Huajun; Xia, Yijing.
Afiliación
  • Peng Y; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Yan Y; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Ma X; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Jiang B; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Chen R; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Feng H; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
  • Xia Y; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China. Electronic address: xiayj@zjsu.edu.cn.
Environ Res ; 259: 119517, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38964585
ABSTRACT
This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 µm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 µm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Óxidos / Contaminantes Químicos del Agua / Electrodos / Técnicas Electroquímicas / Aguas Residuales / Grafito / Antibacterianos Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Óxidos / Contaminantes Químicos del Agua / Electrodos / Técnicas Electroquímicas / Aguas Residuales / Grafito / Antibacterianos Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos