Your browser doesn't support javascript.
loading
Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature.
Rojas-González, Francisco Eduardo; Castillo-Quevedo, César; Rodríguez-Kessler, Peter Ludwig; Jimenez-Halla, José Oscar Carlos; Vásquez-Espinal, Alejandro; Eithiraj, Rajagopal Dashinamoorthy; Cortez-Valadez, Manuel; Cabellos, José Luis.
Afiliación
  • Rojas-González FE; Departamento de Física, Edificio 3F, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
  • Castillo-Quevedo C; Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, km. 191, Colotlán 46200, Jalisco, Mexico.
  • Rodríguez-Kessler PL; Centro de Investigaciones en Óptica, A.C. (CIO) Lomas del Bosque 115, León 37150, Guanajuato, Mexico.
  • Jimenez-Halla JOC; Departamento de Química, División de Ciencias Exactas y Naturales, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Guanajuato, Mexico.
  • Vásquez-Espinal A; Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
  • Eithiraj RD; Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai 600 127, Tamil Nadu, India.
  • Cortez-Valadez M; CONAHCYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo 83190, Sonora, Mexico.
  • Cabellos JL; Coordinación de Investigación y Desarrollo Tecnológico, Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km. 24, Tapachula 30830, Chiapas, Mexico.
Molecules ; 29(14)2024 Jul 18.
Article en En | MEDLINE | ID: mdl-39064952
ABSTRACT
The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme's dispersion with Becke-Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50-800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza