Your browser doesn't support javascript.
loading
A DFT study on the heterolytic bond cleavage of hydrazones under cathodic conditions in acetonitrile.
Lawrence, Mark A W.
Afiliación
  • Lawrence MAW; Department of Chemistry, The University of the West Indies Mona, Kingston 7, W.I., Jamaica. mark.lawrence02@uwimona.edu.jm.
J Mol Model ; 30(8): 294, 2024 Jul 31.
Article en En | MEDLINE | ID: mdl-39080111
ABSTRACT
CONTEXT Hydrazones have been studied for a myriad of chemical and physiochemical properties, such as sensors, chelators and numerous biological activities. Experimental data indicates that hydrazones are unstable under cathodic potentials irrespective of the solvent. The single electron reduction of hydrazones to produce radical anions result in unstable species that cleaves at the N-N bond in a heterolytic manner. The literature has proposed a mechanism favouring the radical on the imine moiety, however in this study DFT calculations suggest the radical on the amine product is more likely upon bond cleavage. This has implications on electrochemical mechanisms, and the active molecule in biological studies viz the method of delivery to target areas.

METHODS:

Density functional theory calculations were carried out using the GAMESS software package. The structures were optimized in the gas phase (B3LYP/6-31G(d,p)) as indicated by the absence of imaginary frequencies in the Hessian, and in CH3CN (B3LYP/6-31G(d,p)/SMD) with the Pople polarization functions. As a comparison, selected pathways were fully optimized using PBE0/6-31G(d,p) and PBE0/6-31G(d,p)/SMD for gas phase and CH3CN, respectively with the Pople polarization functions. The values were not significantly different (< 5% difference). As such only the B3LYP is evaluation is discussed.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Mol Model Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Jamaica Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Mol Model Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Jamaica Pais de publicación: Alemania