Your browser doesn't support javascript.
loading
Cell volume regulation modulates macrophage-related inflammatory responses via JAK/STAT signaling pathways.
Yang, Xueying; Wang, Qifan; Shao, Fei; Zhuang, Zhumei; Wei, Ying; Zhang, Yang; Zhang, Lijun; Ren, Changle; Wang, Huanan.
Afiliación
  • Yang X; MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented
  • Wang Q; MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented
  • Shao F; MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented
  • Zhuang Z; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine of the Second Affil
  • Wei Y; First Affiliated Hospital of Dalian Medical University, Dalian 116024, China.
  • Zhang Y; School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China; School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China.
  • Zhang L; Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, China.
  • Ren C; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, China.
  • Wang H; MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented
Acta Biomater ; 186: 286-299, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-39098445
ABSTRACT
Cell volume as a characteristic of changes in response to external environmental cues has been shown to control the fate of stem cells. However, its influence on macrophage behavior and macrophage-mediated inflammatory responses have rarely been explored. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to regulate macrophage polarization towards anti-inflammatory phenotypes, thereby enabling to reverse macrophage-mediated inflammation response. Specifically, lower the volume of primary macrophages can induce both resting macrophages (M0) and stimulated pro-inflammatory macrophages (M1) to up-regulate the expression of anti-inflammatory factors and down-regulate pro-inflammatory factors. Further mechanistic investigation revealed that macrophage polarization resulting from changing cell volume might be mediated by JAK/STAT signaling pathway evidenced by the transcription sequencing analysis. We further propose to apply this strategy for the treatment of arthritis via direct introduction of PEG into the joint cavity to modulate synovial macrophage-related inflammation. Our preliminary results verified the credibility and effectiveness of this treatment evidenced by the significant inhibition of cartilage destruction and synovitis at early stage. In general, our results suggest that cell volume can be a biophysical regulatory factor to control macrophage polarization and potentially medicate inflammatory response, thereby providing a potential facile and effective therapy for modulating macrophage mediated inflammatory responses. STATEMENT OF

SIGNIFICANCE:

Cell volume has recently been recognized as a significantly important biophysical signal in regulating cellular functionalities and even steering cell fate. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to induce M1 pro-inflammatory macrophages to polarize towards anti-inflammatory M2 phenotype, and this immunomodulatory effect may be mediated by the JAK/STAT signaling pathway. We also proposed the feasible applications of this PEG-induced volume regulation approach towards the treatment of osteoarthritis (OA), wherein our preliminary results implied an effective alleviation of early synovitis. Our study on macrophage polarization mediated by cell volume may open up new pathways for immune regulation through microenvironmental biophysical clues.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factores de Transcripción STAT / Quinasas Janus / Inflamación / Macrófagos Límite: Animals Idioma: En Revista: Acta Biomater Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factores de Transcripción STAT / Quinasas Janus / Inflamación / Macrófagos Límite: Animals Idioma: En Revista: Acta Biomater Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido