Your browser doesn't support javascript.
loading
Periodontal Ligament Cell Apoptosis Activates Lepr+ Osteoprogenitors in Orthodontics.
Liu, H; Zhang, Y; Zhang, Y; Huang, Y; Yang, Y; Zhao, Y; Chen, S; Deng, J; Li, W; Han, B.
Afiliación
  • Liu H; Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, PR China.
  • Zhang Y; National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized
  • Zhang Y; Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, PR China.
  • Huang Y; National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized
  • Yang Y; Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, PR China.
  • Zhao Y; National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized
  • Chen S; Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, PR China.
  • Deng J; National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized
  • Li W; Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, PR China.
  • Han B; National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized
J Dent Res ; 103(9): 937-947, 2024 08.
Article en En | MEDLINE | ID: mdl-39104161
ABSTRACT
Alveolar bone (AB) remodeling, including formation and absorption, is the foundation of orthodontic tooth movement (OTM). However, the sources and mechanisms underlying new bone formation remain unclear. Therefore, we aimed to understand the potential mechanism of bone formation during OTM, focusing on the leptin receptor+ (Lepr+) osteogenitors and periodontal ligament cells (PDLCs). We demonstrated that Lepr+ cells activated by force-induced PDLC apoptosis served as distinct osteoprogenitors during orthodontic bone regeneration. We investigated bone formation both in vivo and in vitro. Single-cell RNA sequencing analysis and lineage tracing demonstrated that Lepr represents a subcluster of stem cells that are activated and differentiate into osteoblasts during OTM. Targeted ablation of Lepr+ cells in a mouse model disrupted orthodontic force-guided bone regeneration. Furthermore, apoptosis and sequential fluorescent labeling assays revealed that the apoptosis of PDLCs preceded new bone deposition. We found that PDL stem cell-derived apoptotic vesicles activated Lepr+ cells in vitro. Following apoptosis inhibition, orthodontic force-activated osteoprogenitors and osteogenesis were significantly downregulated. Notably, we found that bone formation occurred on the compression side during OTM; this has been first reported here. To conclude, we found a potential mechanism of bone formation during OTM that may provide new insights into AB regeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Ligamento Periodontal / Técnicas de Movimiento Dental / Apoptosis / Receptores de Leptina Límite: Animals Idioma: En Revista: J Dent Res Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Ligamento Periodontal / Técnicas de Movimiento Dental / Apoptosis / Receptores de Leptina Límite: Animals Idioma: En Revista: J Dent Res Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos