Your browser doesn't support javascript.
loading
A bronchoscopic navigation method based on neural radiation fields.
Zhu, Lifeng; Zheng, Jianwei; Wang, Cheng; Jiang, Junhong; Song, Aiguo.
Afiliación
  • Zhu L; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Robot Sensing and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China. lfzhulf@gmail.com.
  • Zheng J; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Robot Sensing and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Wang C; Hanglok-Tech Co., Ltd., Hengqin, China.
  • Jiang J; The First Affiliated Hospital of Soochow University, Suzhou, China.
  • Song A; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Robot Sensing and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
Int J Comput Assist Radiol Surg ; 19(10): 2011-2021, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39112914
ABSTRACT

PURPOSE:

We introduce a novel approach for bronchoscopic navigation that leverages neural radiance fields (NeRF) to passively locate the endoscope solely from bronchoscopic images. This approach aims to overcome the limitations and challenges of current bronchoscopic navigation tools that rely on external infrastructures or require active adjustment of the bronchoscope.

METHODS:

To address the challenges, we leverage NeRF for bronchoscopic navigation, enabling passive endoscope localization from bronchoscopic images. We develop a two-stage pipeline offline training using preoperative data and online passive pose estimation during surgery. To enhance performance, we employ Anderson acceleration and incorporate semantic appearance transfer to deal with the sim-to-real gap between training and inference stages.

RESULTS:

We assessed the viability of our approach by conducting tests on virtual bronchscopic images and a physical phantom against the SLAM-based methods. The average rotation error in our virtual dataset is about 3.18 ∘ and the translation error is around 4.95 mm. On the physical phantom test, the average rotation and translation error are approximately 5.14 ∘ and 13.12 mm.

CONCLUSION:

Our NeRF-based bronchoscopic navigation method eliminates reliance on external infrastructures and active adjustments, offering promising advancements in bronchoscopic navigation. Experimental validation on simulation and real-world phantom models demonstrates its efficacy in addressing challenges like low texture and challenging lighting conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Broncoscopía / Fantasmas de Imagen Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Broncoscopía / Fantasmas de Imagen Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania