Your browser doesn't support javascript.
loading
Revisiting Dominance in Population Genetics.
Di, Chenlu; Lohmueller, Kirk E.
Afiliación
  • Di C; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
  • Lohmueller KE; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
Genome Biol Evol ; 16(8)2024 Aug 05.
Article en En | MEDLINE | ID: mdl-39114967
ABSTRACT
Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genética de Población / Modelos Genéticos / Mutación Límite: Animals / Humans Idioma: En Revista: Genome Biol Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genética de Población / Modelos Genéticos / Mutación Límite: Animals / Humans Idioma: En Revista: Genome Biol Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos