Your browser doesn't support javascript.
loading
Design of Fragrance Formulations with Antiviral Activity Using Bayesian Optimization.
Zhang, Fan; Hirama, Yui; Onishi, Shintaro; Mori, Takuya; Ono, Naoaki; Kanaya, Shigehiko.
Afiliación
  • Zhang F; Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi 640-8580, Wakayama, Japan.
  • Hirama Y; Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan.
  • Onishi S; Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan.
  • Mori T; Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan.
  • Ono N; Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan.
  • Kanaya S; Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan.
Microorganisms ; 12(8)2024 Jul 31.
Article en En | MEDLINE | ID: mdl-39203410
ABSTRACT
In case of future viral threats, including the proposed Disease X that has been discussed since the emergence of the COVID-19 pandemic in March 2020, our research has focused on the development of antiviral strategies using fragrance compounds with known antiviral activity. Despite the recognized antiviral properties of mixtures of certain fragrance compounds, there has been a lack of a systematic approach to optimize these mixtures. Confronted with the significant combinatorial challenge and the complexity of the compound formulation space, we employed Bayesian optimization, guided by Gaussian Process Regression (GPR), to systematically explore and identify formulations with demonstrable antiviral efficacy. This approach required the transformation of the characteristics of formulations into quantifiable feature values using molecular descriptors, subsequently modeling these data to predict and propose formulations with likely antiviral efficacy enhancements. The predicted formulations underwent experimental testing, resulting in the identification of combinations capable of inactivating 99.99% of viruses, including a notably efficacious formulation of five distinct fragrance types. This model demonstrates high predictive accuracy (coefficient determination Rcv2 > 0.7) and suggests a new frontier in antiviral strategy development. Our findings indicate the powerful potential of computational modeling to surpass human analytical capabilities in the pursuit of complex, fragrance-based antiviral formulations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Suiza