Your browser doesn't support javascript.
loading
Nanorod inside hollow-nanosphere structured magnetoelectric nanocatalyst for remotely controlled electrocatalysis assisted environmental remediation.
Murali, Nandan; Das, Shashank Bhushan; Sharma, Arti; Thattaru Thodikayil, Aishwarya; Minocha, Shilpi; Siddhanta, Soumik; Saha, Sampa; Betal, Soutik.
Afiliación
  • Murali N; Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Hemlata; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Das SB; Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Sharma A; Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Thattaru Thodikayil A; Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
  • Minocha S; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Siddhanta S; Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Saha S; Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
  • Betal S; Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India. Electronic address: soutik@ee.iitd.ac.in.
Chemosphere ; 364: 143232, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39236914
ABSTRACT
We introduce a highly efficient method for the catalytic breakdown of organic compounds using nanorods embedded within hollow nanospheres structured magnetoelectric nanocatalyst (MENC). MENCs were fabricated through a single-step process utilizing the ultrasonic spray pyrolysis technique. The dynamic electric dipole generation capability due to synergistic interaction between nanorods at the core and the hollow nanosphere shell creates a nanoscale magnetoelectric device capable of electrocatalysis-assisted water purification through advanced oxidation processes under remotely applied magnetic field excitation. Our study examines the electrocatalytic degradation of organic pollutants by MENCs under magnetic field excitation, achieving an unprecedented 90% removal efficiency for synthetic dyes. This remarkable efficiency is a result of surface redox reactions facilitated by electron and hole transfer, resulting in the production of Reactive oxygen species (ROS) such as O2•- and •OH. Additionally, antioxidant experiments were performed to confirm the ROS generation capability of MENCs under magnetic field excitation. Furthermore, trapping experiments performed employing specific scavengers for individual reactive species reveal the mechanism responsible for the magnetic field-driven catalytic breakdown of organic contaminants by MENCs. Interestingly, the MENCs exhibit >95% reduction in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, respectively, within 90 min of exposure to a (20 mT& 1.9 kHz) AC magnetic field.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Staphylococcus aureus / Nanotubos / Escherichia coli / Restauración y Remediación Ambiental / Nanosferas Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Staphylococcus aureus / Nanotubos / Escherichia coli / Restauración y Remediación Ambiental / Nanosferas Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido