Your browser doesn't support javascript.
loading
Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients.
Lee, Seung-Ah; Kim, Hyun Su; Yang, Ehwa; Yoon, Young Cheol; Lee, Ji Hyun; Choi, Byung-Ok; Kim, Jae-Hun.
Afiliación
  • Lee SA; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Kim HS; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Yang E; Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Yoon YC; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Lee JH; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Choi BO; Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Kim JH; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
PLoS One ; 19(9): e0310203, 2024.
Article en En | MEDLINE | ID: mdl-39241036
ABSTRACT
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Enfermedad de Charcot-Marie-Tooth Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Enfermedad de Charcot-Marie-Tooth Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Estados Unidos