Your browser doesn't support javascript.
loading
SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification.
Article en En | MEDLINE | ID: mdl-39250378
ABSTRACT
Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction. In our work, we introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs. The model not only allows accurate predictions of simulation outcomes for a given simulation parameter but also supports uncertainty quantification in the data generation process. Additionally, it enables efficient simulation parameter recommendation and exploration. We integrate SurroFlow and a genetic algorithm as the backend of a visual interface to support effective user-guided ensemble simulation exploration and visualization. Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Vis Comput Graph Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Vis Comput Graph Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos