SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification.
IEEE Trans Vis Comput Graph
; PP2024 Sep 09.
Article
en En
| MEDLINE
| ID: mdl-39250378
ABSTRACT
Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction. In our work, we introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs. The model not only allows accurate predictions of simulation outcomes for a given simulation parameter but also supports uncertainty quantification in the data generation process. Additionally, it enables efficient simulation parameter recommendation and exploration. We integrate SurroFlow and a genetic algorithm as the backend of a visual interface to support effective user-guided ensemble simulation exploration and visualization. Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
IEEE Trans Vis Comput Graph
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Estados Unidos