Your browser doesn't support javascript.
loading
Automated customization of large-scale spiking network models to neuronal population activity.
Wu, Shenghao; Huang, Chengcheng; Snyder, Adam C; Smith, Matthew A; Doiron, Brent; Yu, Byron M.
Afiliación
  • Wu S; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Huang C; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Snyder AC; Neural Basis of Cognition, Pittsburgh, PA, USA.
  • Smith MA; Neural Basis of Cognition, Pittsburgh, PA, USA.
  • Doiron B; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
  • Yu BM; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA.
Nat Comput Sci ; 4(9): 690-705, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39285002
ABSTRACT
Understanding brain function is facilitated by constructing computational models that accurately reproduce aspects of brain activity. Networks of spiking neurons capture the underlying biophysics of neuronal circuits, yet their activity's dependence on model parameters is notoriously complex. As a result, heuristic methods have been used to configure spiking network models, which can lead to an inability to discover activity regimes complex enough to match large-scale neuronal recordings. Here we propose an automatic procedure, Spiking Network Optimization using Population Statistics (SNOPS), to customize spiking network models that reproduce the population-wide covariability of large-scale neuronal recordings. We first confirmed that SNOPS accurately recovers simulated neural activity statistics. Then, we applied SNOPS to recordings in macaque visual and prefrontal cortices and discovered previously unknown limitations of spiking network models. Taken together, SNOPS can guide the development of network models, thereby enabling deeper insight into how networks of neurons give rise to brain function.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potenciales de Acción / Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Nat Comput Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Potenciales de Acción / Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Nat Comput Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos