Your browser doesn't support javascript.
loading
Neural circuit mechanisms underlying context-specific halting in Drosophila.
Sapkal, Neha; Mancini, Nino; Kumar, Divya Sthanu; Spiller, Nico; Murakami, Kazuma; Vitelli, Gianna; Bargeron, Benjamin; Maier, Kate; Eichler, Katharina; Jefferis, Gregory S X E; Shiu, Philip K; Sterne, Gabriella R; Bidaye, Salil S.
Afiliación
  • Sapkal N; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Mancini N; International Max Planck Research School for Synapses and Circuits, Jupiter, FL, USA.
  • Kumar DS; Florida Atlantic University, Boca Raton, FL, USA.
  • Spiller N; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Murakami K; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Vitelli G; International Max Planck Research School for Synapses and Circuits, Jupiter, FL, USA.
  • Bargeron B; Florida Atlantic University, Boca Raton, FL, USA.
  • Maier K; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Eichler K; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Jefferis GSXE; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Shiu PK; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
  • Sterne GR; Florida Atlantic University, Boca Raton, FL, USA.
  • Bidaye SS; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
Nature ; 634(8032): 191-200, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39358520
ABSTRACT
Walking is a complex motor programme involving coordinated and distributed activity across the brain and the spinal cord. Halting appropriately at the correct time is a critical component of walking control. Despite progress in identifying neurons driving halting1-6, the underlying neural circuit mechanisms responsible for overruling the competing walking state remain unclear. Here, using connectome-informed models7-9 and functional studies, we explain two fundamental mechanisms by which Drosophila implement context-appropriate halting. The first mechanism ('walk-OFF') relies on GABAergic neurons that inhibit specific descending walking commands in the brain, whereas the second mechanism ('brake') relies on excitatory cholinergic neurons in the nerve cord that lead to an active arrest of stepping movements. We show that two neurons that deploy the walk-OFF mechanism inhibit distinct populations of walking-promotion neurons, leading to differential halting of forward walking or turning. The brake neurons, by constrast, override all walking commands by simultaneously inhibiting descending walking-promotion neurons and increasing the resistance at the leg joints. We characterized two behavioural contexts in which the distinct halting mechanisms were used by the animal in a mutually exclusive manner the walk-OFF mechanism was engaged for halting during feeding and the brake mechanism was engaged for halting and stability during grooming.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Caminata / Drosophila melanogaster / Conectoma / Vías Nerviosas Límite: Animals Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Caminata / Drosophila melanogaster / Conectoma / Vías Nerviosas Límite: Animals Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido