Your browser doesn't support javascript.
loading
From Proline to Chlorantraniliprole Mimics: Computer-Aided Design, Simple Preparation, and Excellent Insecticidal Profiles.
Xiang, Shu-Zhen; Liu, Kong-Jun; Wang, Jin-Jing; Ye, Hao-Jie; Fan, Li-Jun; Song, Li; Wang, Xiao-Hui; Wang, Pei-Yi.
Afiliación
  • Xiang SZ; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Liu KJ; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Wang JJ; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563002,China.
  • Ye HJ; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Fan LJ; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Song L; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Wang XH; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
  • Wang PY; State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
J Agric Food Chem ; 2024 Oct 04.
Article en En | MEDLINE | ID: mdl-39363717
ABSTRACT
Chlorantraniliprole (CHL), a favored agricultural insecticide, is renowned for its high efficiency and broad-spectrum effectiveness against lepidoptera insects. However, the urgency for new insecticide development is underscored by the intricate multistep preparation process and modest overall yields of CHL, along with the escalating challenge of insect resistance. In response, we have crafted CHL mimics from proline employing computer-aided drug design. Molecular docking analysis of CHL's interactions with the ryanodine receptor (RyR) revealed that the nitrogen atom within the pyrazole moiety does not engage in pivotal interactions. Its removal may not abolish bioactivity entirely but could substantially simplify the synthetic process, thereby enhancing atom economy. This revelation prompted the exclusion of nitrogen and the subsequent formation of a pyrrole ring, enabling the meticulous design of synthetic pathways characterized by cost-effective precursors, streamlined synthesis, the avoidance of toxic reagents, minimal instrumentation, and high yields in the pursuit of innovative RyR modulators. Among these modulators, A1 and B1, obtained with yields exceeding 60%, showcased exceptional insecticidal potency, with LC50 values spanning from 0.12 to 1.47 mg L-1 against P. xylostella and M. separate. The inhibitory effects of these two compounds on insect detoxification enzymes imply a reduced likelihood of eliciting resistance in comparison to CHL, a finding further corroborated by their insecticidal potency against resistant pests. Moreover, molecular docking, MD simulations, and DFT calculations provided valuable structural insights, potentially unraveling the superior insecticidal activity of these two molecules, and thus paving the way for developing more potent insecticides.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Agric Food Chem Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Agric Food Chem Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos