Mutation of amino acid residues in the mobile loop region of the NAD(H)-binding domain of proton-translocating transhydrogenase.
Biochim Biophys Acta
; 1409(1): 25-38, 1998 Nov 02.
Article
en En
| MEDLINE
| ID: mdl-9804876
The effects of single amino acid substitutions in the mobile loop region of the recombinant NAD(H)-binding domain (dI) of transhydrogenase have been examined. The mutations lead to clear assignments of well-defined resonances in one-dimensional 1H-NMR spectra. As with the wild-type protein, addition of NADH, or higher concentrations of NAD+, led to broadening and some shifting of the well-defined resonances. With many of the mutant dI proteins more nucleotide was required for these effects than with wild-type protein. Binding constants of the mutant proteins for NADH were determined by equilibrium dialysis and, where possible, by NMR. Generally, amino acid changes in the mobile loop region gave rise to a 2-4-fold increase in the dI-nucleotide dissociation constants, but substitution of Ala236 for Gly had a 10-fold effect. The mutant dI proteins were reconstituted with dI-depleted bacterial membranes with apparent docking affinities that were indistinguishable from that of wild-type protein. In the reconstituted system, most of the mutants were more inhibited in their capacity to perform cyclic transhydrogenation (reduction of acetyl pyridine adenine dinucleotide, AcPdAD+, by NADH in the presence of NADP+) than in either the simple reduction of AcPdAD+ by NADPH, or the light-driven reduction of thio-NADP+ by NADH, which suggests that they are impaired at the hydride transfer step. A cross-peak in the 1H-1H nuclear Overhauser enhancement spectrum of a mixture of wild-type dI and NADH was assigned to an interaction between the A8 proton of the nucleotide and the betaCH3 protons of Ala236. It is proposed that, following nucleotide binding, the mobile loop folds down on to the surface of the dI protein, and that contacts, especially from Tyr235 in a Gly-Tyr-Ala motif with the adenosine moiety of the nucleotide, set the position of the nicotinamide ring of NADH close to that of NADP+ in dIII to effect direct hydride transfer.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Rhodospirillum rubrum
/
Sitios de Unión
/
NAD
/
NADP Transhidrogenasas
Idioma:
En
Revista:
Biochim Biophys Acta
Año:
1998
Tipo del documento:
Article
Pais de publicación:
Países Bajos