Your browser doesn't support javascript.
loading
Model-based and model-free characterization of epidemic outbreaks
Jonas Dehning; F. Paul Spitzner; Matthias C. Linden; Sebastian B. Mohr; Joao Pinheiro Neto; Johannes Zierenberg; Michael Wibral; Michael Wilczek; Viola Priesemann.
Afiliación
  • Jonas Dehning; Max Planck Institute for Dynamics and Self-Organization
  • F. Paul Spitzner; Max Planck Institute for Dynamics and Self-Organization
  • Matthias C. Linden; Institute for Theoretical Physics, Leibniz University
  • Sebastian B. Mohr; Max Planck Institute for Dynamics and Self-Organization
  • Joao Pinheiro Neto; Max Planck Institute for Dynamics and Self-Organization
  • Johannes Zierenberg; Max Planck Institute for Dynamics and Self-Organization
  • Michael Wibral; Campus Institute for Dynamics of Biological Networks, University of Göttingen
  • Michael Wilczek; Max Planck Institute for Dynamics and Self-Organization
  • Viola Priesemann; Max Planck Institute for Dynamics and Self-Organization
Preprint en En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20187484
ABSTRACT
Here we provide detailed background information for our work on Bayesian inference of change-points in the spread of SARS-CoV-2 and the effectiveness of non-pharmaceutical interventions (Dehning et al., Science, 2020). We outline the general background of Bayesian inference and of SIR-like models. We explain the assumptions that underlie model-based estimates of the reproduction number and compare them to the assumptions that underlie model-free estimates, such as used in the Robert-Koch Institute situation reports. We highlight effects that originate from the two estimation approaches, and how they may cause differences in the inferred reproduction number. Furthermore, we explore the challenges that originate from data availability - such as publication delays and inconsistent testing - and explain their impact on the time-course of inferred case numbers. Along with alternative data sources, this allowed us to cross-check and verify our previous results.
Licencia
cc_no
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-MEDRXIV Tipo de estudio: Prognostic_studies / Rct Idioma: En Año: 2020 Tipo del documento: Preprint
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-MEDRXIV Tipo de estudio: Prognostic_studies / Rct Idioma: En Año: 2020 Tipo del documento: Preprint