Este articulo es un Preprint
Los preprints son informes de investigación preliminares que no han sido certificados por revisión por pares. No deben considerarse para guiar la práctica clínica o los comportamientos relacionados con la salud y no deben publicarse en los medios como información establecida.
Los preprints publicados en línea permiten a los autores recibir comentarios rápidamente, y toda la comunidad científica puede evaluar de forma independiente el trabajo y responder adecuadamente. Estos comentarios se publican junto con los preprints para que cualquiera pueda leer y servir como una revisión pospublicación.
Inferring Transmission Fitness Advantage of SARS-CoV-2 Variants of Concern in Wastewater Using Digital PCR
Preprint
en En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-21262024
ABSTRACT
Throughout the global COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterized by increased transmissibility, increased virulence, or reduced neutralization by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole-genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches. Here, we adapt and apply a rapid, high-throughput method for detection and quantification of the frequency of two deletions characteristic of the B.1.1.7, B.1.351, and P.1 VOCs in wastewater. We further develop a statistical approach to analyze temporal dynamics in drop-off RT-dPCR assay data to quantify transmission fitness advantage, providing data similar to that obtained from clinical samples. Digital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.
cc_by_nc_nd
Texto completo:
1
Colección:
09-preprints
Base de datos:
PREPRINT-MEDRXIV
Tipo de estudio:
Prognostic_studies
Idioma:
En
Año:
2021
Tipo del documento:
Preprint