Your browser doesn't support javascript.
loading
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
Afiliación
  • Katharine Sherratt; London School of Hygiene & Tropical Medicine
  • Hugo Gruson; London School of Hygiene & Tropical Medicine
  • Rok Grah; European Centre for Disease Prevention and Control (ECDC)
  • Helen Johnson; European Centre for Disease Prevention and Control (ECDC)
  • Rene Niehus; European Centre for Disease Prevention and Control (ECDC)
  • Bastian Prasse; European Centre for Disease Prevention and Control (ECDC)
  • Frank Sandman; European Centre for Disease Prevention and Control (ECDC)
  • Jannik Deuschel; Karlsruhe Institute of Technology
  • Daniel Wolffram; Karlsruhe Institute of Technology
  • Sam Abbott; London School of Hygiene & Tropical Medicine
  • Alexander Ullrich; Robert Koch Institute
  • Graham Gibson; University of Massachusetts Amherst
  • Evan L Ray; University of Massachusetts Amherst
  • Nicholas G Reich; University of Massachusetts Amherst
  • Daniel Sheldon; University of Massachusetts Amherst
  • Yijin Wang; University of Massachusetts Amherst
  • Nutcha Wattanachit; University of Massachusetts Amherst
  • Lijing Wang; Boston Children's Hospital and Harvard Medical School
  • Jan Trnka; Charles University
  • Guillaume Obozinski; Ecole Polytechnique Federale de Lausanne
  • Tao Sun; Ecole Polytechnique Federale de Lausanne
  • Dorina Thanou; Ecole Polytechnique Federale de Lausanne
  • Loic Pottier; Education nationale
  • Ekaterina Krymova; Eidgenossische Technische Hochschule Zurich
  • Maria Vittoria Barbarossa; Frankfurt Institute for Advanced Studies
  • Neele Leithauser; Fraunhofer Institute for Industrial Mathematics
  • Jan Mohring; Fraunhofer Institute for Industrial Mathematics
  • Johanna Schneider; Fraunhofer Institute for Industrial Mathematics
  • Jaroslaw Wlazlo; Fraunhofer Institute for Industrial Mathematics
  • Jan Fuhrmann; Heidelberg University
  • Berit Lange; Helmholtz Centre for Infection Research
  • Isti Rodiah; Helmholtz Centre for Infection Research
  • Prasith Baccam; IEM, Inc.
  • Heidi Gurung; IEM, Inc.
  • Steven Stage; IEM, Inc.
  • Bradley Suchoski; IEM, Inc.
  • Jozef Budzinski; Independent
  • Robert Walraven; Independent
  • Inmaculada Villanueva; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat Pompeu Fabra
  • Vit Tucek; Institute of Computer Science of the CAS
  • Martin Smid; Institute of Information Theory and Automation of the CAS
  • Milan Zajicek; Institute of Information Theory and Automation of the CAS
  • Cesar Perez Alvarez; Inverence
  • Borja Reina; Inverence
  • Nikos I Bosse; London School of Hygiene & Tropical Medicine
  • Sophie Meakin; London School of Hygiene & Tropical Medicine
  • Pierfrancesco Alaimo Di Loro; LUMSA University
  • Antonello Maruotti; LUMSA University
  • Veronika Eclerova; Masaryk University
  • Andrea Kraus; Masaryk University
  • David Kraus; Masaryk University
  • Lenka Pribylova; Masaryk University
  • Bertsimas Dimitris; Massachusetts Institute of Technology
  • Michael Lingzhi Li; Massachusetts Institute of Technology
  • Soni Saksham; Massachusetts Institute of Technology
  • Jonas Dehning; Max-Planck-Institut fur Dynamik und Selbstorganisation
  • Sebastian Mohr; Max-Planck-Institut fur Dynamik und Selbstorganisation
  • Viola Priesemann; Max-Planck-Institut fur Dynamik und Selbstorganisation
  • Grzegorz Redlarski; Medical University of Gdansk
  • Benjamin Bejar; Paul Scherrer Institute
  • Giovanni Ardenghi; Politecnico di Milano
  • Nicola Parolini; Politecnico di Milano
  • Giovanni Ziarelli; Politecnico di Milano
  • Wolfgang Bock; Technical University of Kaiserlautern
  • Stefan Heyder; Technische Universitat Ilmenau
  • Thomas Hotz; Technische Universitat Ilmenau
  • David E. Singh; Universidad Carlos III de Madrid
  • Miguel Guzman-Merino; Universidad Carlos III de Madrid
  • Jose L Aznarte; Universidad Nacional de Educacion a Distancia (UNED)
  • David Morina; Universitat de Barcelona
  • Sergio Alonso; Universitat Politecnica de Catalunya
  • Enric Alvarez; Universitat Politecnica de Catalunya
  • Daniel Lopez; Universitat Politecnica de Catalunya
  • Clara Prats; Universitat Politecnica de Catalunya
  • Jan Pablo Burgard; Universitat Trier
  • Arne Rodloff; University of Cologne
  • Tom Zimmermann; University of Cologne
  • Alexander Kuhlmann; University of Halle
  • Janez Zibert; University of Ljubljana
  • Fulvia Pennoni; University of Milano-Bicocca
  • Fabio Divino; University of Molise
  • Marti Catala; University of Oxford
  • Gianfranco Lovison; University of Palermo
  • Paolo Giudici; University of Pavia
  • Barbara Tarantino; University of Pavia
  • Francesco Bartolucci; University of Perugia
  • Giovanna Jona Lasinio; University of Rome ""La Sapienza""
  • Marco Mingione; University of Rome ""La Sapienza""
  • Alessio Farcomeni; University of Rome ""Tor Vergata""
  • Ajitesh Srivastava; University of Southern California
  • Pablo Montero-Manso; University of Sydney
  • Aniruddha Adiga; University of Virginia
  • Benjamin Hurt; University of Virginia
  • Bryan Lewis; University of Virginia
  • Madhav Marathe; University of Virginia
  • Przemyslaw Porebski; University of Virginia
  • Srinivasan Venkatramanan; University of Virginia
  • Rafal Bartczuk; University of Warsaw
  • Filip Dreger; University of Warsaw
  • Anna Gambin; University of Warsaw
  • Krzysztof Gogolewski; University of Warsaw
  • Magdalena Gruziel-Slomka; University of Warsaw
  • Bartosz Krupa; University of Warsaw
  • Antoni Moszynski; University of Warsaw
  • Karol Niedzielewski; University of Warsaw
  • Jedrzej Nowosielski; University of Warsaw
  • Maciej Radwan; University of Warsaw
  • Franciszek Rakowski; University of Warsaw
  • Marcin Semeniuk; University of Warsaw
  • Ewa Szczurek; University of Warsaw
  • Jakub Zielinski; University of Warsaw
  • Jan Kisielewski; University of Warsaw, University of Bialystok
  • Barbara Pabjan; University of Wroclaw
  • Kirsten Holger; Universtat Leipzig
  • Yuri Kheifetz; Universtat Leipzig
  • Markus Scholz; Universtat Leipzig
  • Marcin Bodych; Wroclaw University of Science and Technology
  • Maciej Filinski; Wroclaw University of Science and Technology
  • Radoslaw Idzikowski; Wroclaw University of Science and Technology
  • Tyll Krueger; Wroclaw University of Science and Technology
  • Tomasz Ozanski; Wroclaw University of Science and Technology
  • Johannes Bracher; Karlsruhe Institute of Technology
  • Sebastian Funk; London School of Hygiene & Tropical Medicine
Preprint en En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22276024
ABSTRACT
BackgroundShort-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. MethodsWe used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. ResultsOver 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. ConclusionsOur results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks. Code and data availabilityAll data and code are publicly available on Github covid19-forecast-hub-europe/euro-hub-ensemble.
Licencia
cc_by
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-MEDRXIV Tipo de estudio: Experimental_studies / Prognostic_studies / Rct Idioma: En Año: 2022 Tipo del documento: Preprint
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-MEDRXIV Tipo de estudio: Experimental_studies / Prognostic_studies / Rct Idioma: En Año: 2022 Tipo del documento: Preprint