Study on doxoru bicin-loaded star-shaped multi-arm PLGA-PEG-NH2 nanomicelles / 国际生物医学工程杂志
International Journal of Biomedical Engineering
; (6): 146-150,后插2, 2012.
Article
en Zh
| WPRIM
| ID: wpr-598027
Biblioteca responsable:
WPRO
ABSTRACT
ObjectiveTo develop doxorubicine-loaded nanomicelles based on a type of novel starshaped 4-arm PLGA-PEG-NH2 amphiphilic block copolymers.Methods 4s-(PLGA-PEG-NH2) synthesized by 4s-PLGA and (H2N-PEG-NH2) according to N,N'-dicyclohexylcarbodiimide(DCC) condensation reaction was demonstrated by 1H NMR spectroscopy and gel permeation chromatography(GPC); DOX-loaded 4s-(PLGA-PEG-NH2) nanomicelles were self-assembled by doxorubicin(DOX) and 4s-(PLGA-PEG-NH2) via emulsion-solvent evaporation method and characterized in terms of morphology,particle size and size distribution,drug loading,encapsulation efficacy,cell uptake and cytotoxicity studies.Results4s-(PLGA-PEG-NH2) were capable of selfassembling intocore-shell nanomicelles structure and encapsulating DOX into their hydrophobic cores.The mean size of DOX-loaded 4s-(PLGA-PEG-NH2) was nanometer size; drug loading and encapsulation efficacy were around 7.5% and 75.2%,respectively.Mean surface charge of the micelles was around -17.6 mV.In vitro cell uptake and cytotoxicity studies indicated that comparing to the DOX-loaded linear-(PLGA-PEG-PLGA)nanomicelles,DOX-loaded 4s-(PLGA-PEG-NH2) nanomicelles showed better performance in uptaking by HeLa cells and higher cytotoxicity to cancer cells.Conclusion4s-(PLGA-PEG-NH2) amphiphilic block copolymers can be successfully used in encapsulating DOX,self-assemblingcore-shell nanomicelles in aqueous solvent.Therefore,4s-(PLGA-PEG-NH2) copolymers can be considered as a promising drug carrier in effectively carrying hydrophobic drug,improving the efficacy while reducing the side effect.
Texto completo:
1
Base de datos:
WPRIM
Idioma:
Zh
Revista:
International Journal of Biomedical Engineering
Año:
2012
Tipo del documento:
Article