Your browser doesn't support javascript.
loading
Classification of soil respiration in areas of sugarcane renewal using decision tree
Farhate, Camila Viana Vieira; Souza, Zigomar Menezes de; Oliveira, Stanley Robson de Medeiros; Carvalho, João Luís Nunes; La Scala Júnior, Newton; Santos, Ana Paula Guimarães.
Afiliação
  • Farhate, Camila Viana Vieira; University of Campinas. Faculdade de Engenharia Agrícola. Campinas. BR
  • Souza, Zigomar Menezes de; University of Campinas. Faculdade de Engenharia Agrícola. Campinas. BR
  • Oliveira, Stanley Robson de Medeiros; University of Campinas. Faculdade de Engenharia Agrícola. Campinas. BR
  • Carvalho, João Luís Nunes; Brazilian Center for Research in Energy and Materials. Campinas. BR
  • La Scala Júnior, Newton; São Paulo State University. Department of Exact Sciences. Jaboticabal. BR
  • Santos, Ana Paula Guimarães; University of Campinas. Faculdade de Engenharia Agrícola. Campinas. BR
Sci. agric ; 75(3): 216-224, mai.-jun. 2018. ilus, tab, graf
Article em En | VETINDEX | ID: biblio-1497708
Biblioteca responsável: BR68.1
ABSTRACT
The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration soil temperature > precipitation > macroporosity > soilmoisture > potential acidity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Dióxido de Carbono / Análise do Solo / Saccharum / Matéria Orgânica / Mineração de Dados Idioma: En Revista: Sci. agric Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Dióxido de Carbono / Análise do Solo / Saccharum / Matéria Orgânica / Mineração de Dados Idioma: En Revista: Sci. agric Ano de publicação: 2018 Tipo de documento: Article