Your browser doesn't support javascript.
loading
Power Flow Analysis and Self-recovery of Electrical Energy Distribution Network Using Artificial Neural Networks
Avelar, Fabio da Silva; Fritzen, Paulo Cícero; Furucho, Mariana Antônia Aguiar.
Afiliação
  • Avelar, Fabio da Silva; Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Sistemas de Energia. Curitiba. BR
  • Fritzen, Paulo Cícero; Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Sistemas de Energia. Curitiba. BR
  • Furucho, Mariana Antônia Aguiar; Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Sistemas de Energia. Curitiba. BR
Braz. arch. biol. technol ; Braz. arch. biol. technol;61(spe): e18000320, 2018. tab, graf
Article em En | LILACS | ID: biblio-974145
Biblioteca responsável: BR1.1
ABSTRACT
ABSTRACT A computational model for self-recovery of electricity distribution network was developed to simulate it, emulated by the IEEE 123 node model. The electrical system considered has automatic switches capable of identifying a momentary failure in the line and finding the best reconfiguration for its reclosing. An artificial neural network (ANN), backpropagation, was used to classify the type of failure and determine the best reconfiguration of the distribution network. Initially, five power failure scenarios were simulated in certain different parts of the power grid, and power flow analysis via OpenDSS was performed. Next, the most suitable switching was observed within the shortest time interval to restore the power supply. With the purpose of better visualization to identify the reclosing, an implementation was carried out via ELIPSE SCADA. In this way, it is possible to identify the faulted segment in order to isolate it, leaving the smallest number of consumers without power supply in shortest possible time. With the results of the simulations, tests and analyzes were performed to verify their robustness and speed, in the expectation that the model developed be faster than an experienced Operating Distribution Center.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Assunto principal: Redes Neurais de Computação / Instalação Elétrica / Eletricidade Tipo de estudo: Prognostic_studies Idioma: En Revista: Braz. arch. biol. technol Assunto da revista: BIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Assunto principal: Redes Neurais de Computação / Instalação Elétrica / Eletricidade Tipo de estudo: Prognostic_studies Idioma: En Revista: Braz. arch. biol. technol Assunto da revista: BIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil