Anisotropic water diffusion in nematic self-assemblies of clay nanoplatelets suspended in water.
Langmuir
; 23(9): 5100-5, 2007 Apr 24.
Article
em En
| MEDLINE
| ID: mdl-17375942
Diffusion-weighted magnetic resonance imaging provides a vivid description of the little understood role played by interfacial interactions with macroscopic bodies in the cooperative self-assembly of clay nanoplatelets suspended in water. The interfacial interaction between hydrophilic glass walls and clay platelets in a Na-fluorhectorite gel can produce, for dilute gels, a face-to-wall anchoring of the platelets that leads to a uniaxial nematic order with platelet faces parallel to the walls but with randomly distributed normals of the faces. The application of a magnetic field perpendicular to the walls transforms this uniaxial order to an extended biaxial nematic order with orthogonal alignment between normals and the field. Moreover, for apolar walls, this face-to-wall anchoring is considerably hindered, and the uniaxial nematic order can be substantially disrupted.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Langmuir
Assunto da revista:
QUIMICA
Ano de publicação:
2007
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos