Your browser doesn't support javascript.
loading
Sequential and parallel image restoration: neural network implementations.
Figueiredo, M T; Leitao, J N.
Afiliação
  • Figueiredo MT; Dept. de Engenharia Electrotecnica e de Comput., Inst. Superior Tecnico, Lisbon.
IEEE Trans Image Process ; 3(6): 789-801, 1994.
Article em En | MEDLINE | ID: mdl-18296247
Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Image Process Assunto da revista: INFORMATICA MEDICA Ano de publicação: 1994 Tipo de documento: Article País de publicação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Image Process Assunto da revista: INFORMATICA MEDICA Ano de publicação: 1994 Tipo de documento: Article País de publicação: Estados Unidos